DISROPT
Here, we will delve into DISROPT basics and the implementation of the ‘Planning of Battery Charging for Electric Robots’ scenario.
ChoiRbot
In this tutorial, we will delve into ChoiRbot basics and the implementation of the ‘Task Allocation’ scenario using Turtlebot3 and Gazebo simulator.
CrazyChoir
In this tutorial, we will delve into CrazyChoir basics and the implementation of the ‘Target Surveillance’ scenario using Crazyflie and Webots simulator.
Abstract
Several interesting problems in multi-robot systems can be cast in the framework of distributed optimization. Examples include multi-robot task allocation, vehicle routing, target protection and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this paper, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss their implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots.